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Abstract. The present work evaluates two ways of approximating the spectral function 
S(k, w )  in the kinetic regime (Kn + l), by calculating the predictions of these methods for a 
simple model of the Boltzmann equation, and comparing those predictions with exact 
results. The perturbed eigenvalue approximation, used in this context for the first time, is 
shown to be clearly superior to the other method considered (a generalised hydrodynamic 
approximation), both in rapidity of convergence at fixed Kn, and in range of applicability in 
Kn. 

1. Introduction 

It is of interest to investigate the way in which the number density fluctuation spectrum 
S ( k ,  w ) ,  observed experimentally by light scattering and neutron scattering in fluids, 
changes from the shape predicted by hydrodynamics, as the wavelength k-’ becomes as 
small as the order of a mean free path in the fluid. For a dilute gas, one may in principle 
obtain S ( k ,  w )  theoretically from the Boltzmann equation. In the hydrodynamic 
regime (wavenumber k small compared with an inverse mean free path), these 
predictions agree with those following from the equations of hydrodynamics. For k of 
the order of a mean free path (the kinetic regime), various approximations have been 
suggested for obtaining kinetic corrections to the hydrodynamic lineshape predictions. 
A number of these approximation methods have been reviewed by Clark (1975 and 
references therein), who compares a variety of lowest-order kinetic correction predic- 
tions with ‘exact’ results following from a 21-moment model approximation to the 
Boltzmann equation (see e.g. Sugawara et a1 1968), and with experiment. 

Here a simple model equation, whose properties can be found explicitly for any 
wavenumber k and frequency U,  is considered in place of the full Boltzmann equation. 
The exact spectral function S ( k ,  w )  obtained from this model equation is compared with 
predictions obtained by applying two different approximation procedures (neither 
considered by Clark (1975)) to that same model equation, over a range of wavelengths. 
These comparisons should indicate how effective the same approximation procedures 
will be when applied to the Boltzmann equation itself. The study should be regarded as 
a first step towards the goal of developing a successful approximation procedure, simple 
to use, which can also serve as an independent check on the kinetic modelling method in 
at least part of the kinetic regime. 

Generalised hydrodynamics (Bixon et a1 1971, Selwyn and Oppenheim 197 1) gives 
expressions for the Fourier-Laplace transforms of the hydrodynamic moments of the 
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Boltzmann equation which are formally exact throughout the kinetic regime. To obtain 
physical predictions from this formalism, however, approximation is also necessary. 
The first approximation method considered here is one proposed by Bixon et a1 (197 1) 
in conjunction with their formulation of generalised hydrodynamics. 

The second approximation method dealt with here is related to the method for 
deriving kinetic corrections to sound propagation predictions originally proposed by 
Wang Chang and Uhlenbeck (1970). As discussed by Foch and Ford (1970), that 
method can be recast as a perturbed eigenvalue expansion. As shown below, the 
approach can be generalised in such a way as to predict kinetic corrections to lineshape 
predictions. One conclusion of the present study is that, while both approximation 
procedures are perfectly valid, the one based upon the perturbed eigenvalue expansion 
is clearly more successful. It not only gives closer agreement, order-for-order, than that 
of Bixon et a1 (1971), but it continues to be a usable procedure at values of the 
wavenumber k so large that the generalised hydrodynamic approximation breaks 
down. 

2. One-dimensional model equation 

The equation used here in place of the full Boltzmann equation is the one-dimensional 
model equation 

(:+ c:)h = J [ h ]  = -(h - n )  

where h is the deviation from absolute equilibrium of the number density distribution 
function 

f =p(l+ h )  

and n is the deviation of the number density from its equilibrium value (all variables are 
non-dimensional, and the external length scale is a mean free path). Equation (1) 
describes a simple diffusive system, with the number density n as the single conserved 
quantity. Some of its properties have been discussed by Goebel and Johnson (1979) 
and a similar equation has been considered by RCsibois and de Leener (1977). The 
lineshape predicted by equation (1) is that discussed in some detail by Nelkin and 
Ghatak (1964). It exhibits the well known change from simple diffusive broadening at 
small k to Doppler broadening at large k, and is known exactly for all k. 

The structure function which results from equation (1) in the hydrodynamic regime 
is the Lorentzian 

where D is the constant (non-dimensionalised) coefficient of diffusion; its value is 

D = $  (3) 

for this model. When k ceases to be small, kinetic corrections must be made to equation 
(2). As suggested by Selwyn and Oppenheim (1971), these corrections depend not only 
upon k, but also on w, to lowest order. 
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The exact solution for S ( k ,  w )  following from (1) is obtained by imposing the initial 

(4) 

condition 

h(x ,  c,  t = 0 )  = 4 / 2 ? r S ( X )  
and using the definition 

S+O' 
k ,  w real) 

S ( k ,  w )  = 2 Re n ( k ,  w + i s )  

where n ( k ,  w )  is the Fourier-Laplace transform of the number density 

n(x ,  t )  = (Olh(x, t ) )  

(a summary of notation and mathematical properties is contained in the appendix). The 
exact solution for n(k ,  w )  following from (1) is 

n ( k ,  U)=[- io  +ik(Z-'+z)]-' (6 )  

where Z ( z )  is the plasma dispersion function (Fried and Conte 1961) 

dc 00 e-c2 

Z ( z ) =  c 7- 

and 

z = x + i y = (i + i), 

(7) 

Z is a tabulated function (Faddeyeva and Terent'ev 1961). 

3. A generalised hydrodynamic approximation 

The generalised hydrodynamic approach of Bixon et a1 (1971) will be considered in 
detail here, combined with the approximation procedure suggested by those authors, 
and applied to derive the lineshape resulting from the model equation (1). (Some other 
aspects of generalised hydrodynamics, as applied to one-dimensional model equations, 
have been discussed by Goebel and Johnson (1979).) 

From the results of Bixon et a1 (1971), using the notation of the appendix herein, all 
collisional contributions to the Fourier-Laplace transformed equations for the hydro- 
dynamic moments of the Boltzmann (or model) equation are contained in the matrix 
elements 

D~~ = (a IP(-iw + PLP)-'P~P) (9) 

where L is the operator 

L = ik c - E-' J, 

E is a scale factor set equal to unity in the present work, and J is the linearised 
Boltzmann (or model) collision operator. P is the projection operator onto the space of 
all those states orthogonal to the hydrodynamic states. As discussed by Goebel and 
Johnson (1979), equation (1) describes a system with a single hydrodynamic state IO), 
and a single generalised hydrodynamic equation. For the given initial condition (4), this 
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equation becomes 

(-iw - i kDl l )n (k ,  w )  = 1 (11) 

where Dll can be obtained analytically, giving the Nelkin-Ghatak profile (6)  for 
S(k ,  0). 

In order to test the approximation procedure suggested by Bixon eta1 (1971), one 
approximates the matrix element (9)  using the operator identity 

(-io +PLP)-l= (-iw -J/e)-'--(-iw - J / E ) - ' P  ik * cP(-iw +PLP)-l. (12) 

This gives the matrix elements Dap in terms of the (presumably more familiar) matrix 
elements of the operator (-iw - J / E ) - ' .  As noted by Goebel and Johnson (1979), the 
expansion (12) gives Dll as a power series in z - ~ ~ ,  where z is defined by equation (8), 
yielding 

When k + 0, equation (13) reduces to the Navier-Stokes prediction of equation (2). 

4. Perturbation approximation 

To use the perturbed eigenvalue expansion discussed by Foch and Ford (1970) for 
predicting kinetic corrections to lineshape predictions, one may write the Fourier- 
Laplace transform of equation (1)  in the form 

(J +Ac)h = E h  - 1 (14) 

with the use of initial condition (4) ,  where 

E = -iw, A = -ik. (15) 

Here h = h ( k ,  w )  is the transform of h(x ,  t ) .  One then generates an approximate 
solution by writing 

E =Eo+AE1+AZE2+. . 
h = ho+Ahl+A2h2+. . . 

and equating like powers of A. Uniqueness is obtained by demanding that ho has 
non-zero overlap with n(k ,  U )  and is orthogonal to all higher-order corrections: 

One obtains for 

II ( k ,  U )  = (01 h (k ,  w ) )  E Ao 

the equation 

Ao[-P-(Eo+AEi+. . . ) + A ~ ] ( h o + A h l + .  . . )+( l -P) (ho+Ahi+ .  . . ) = O .  (19) 

By equating successively higher powers of A, one generates expressions €or successive 
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terms in Eo and hi, in terms of the moment n = Ao. Thus, 

=A,’, lho) = IO)Ao; 

E1 = 0, Ihl) = 1l)A;’); 

. . .  
(amo is the kinematic coupling matrix defined in equation (A7). On the other hand, if 
one takes the (01 moment of the transform equation (14), one obtains the continuity 
equation 

En(k, w)+iku(k, w )  = 1 (21) 

where 

&U =( l lh )=A, .  

The successive approximations given by equation (19) generate an expansion for the 
moment A : 

A 1-  - h”Ai”= 1 h m ( l ( h m )  
m=O m =O 

which is of the form 

A(Zm+l) a A o ( l  +Ag1)-(2m+’), 

Using equation (21), one thus obtains 

where explicit values for the Ci are found to be 

c,=t.. . * c -1 c -1 
1 - 2  3-4 

To each order m of approximation, equation (24) gives an implicit expression for the 
mth approximation to n(k, w ) .  The solution of the full implicit equation (24) will be 
taken to define the perturbed eigenvalue mth approximation to n(k, w ) .  

Instead of solving the full equation (24), one could use an iterative re-approxima- 
tion, treating A,’ as a small parameter on the right-hand side of equation (24), and 
obtaining Ah’”) explicitly in terms of A~”-”.  Direct solution of the full implicit equation 
(24), however, was found to give much better agreement with exact results. (For 
instance, the iterative re-approximation to equation (24), to lowest order, gives the 
Lorentzian lineshape (2) predicted by hydrodynamics, whereas the exact lowest-order 
approximation 

2Ao’ = -(1 + i w )  + [1+ 2k2-  w 2 -  2iw]’’* (26) 

agrees with the Lorentzian prediction (2) for small k, but continues to give surprisingly 
good lineshape predictions well into the kinetic regime.) 
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5. Effectiveness of approximation procedures 

Both the generalised hydrodynamic procedure (BDM) and the perturbation (P) pro- 
cedure give good approximations to the lineshape for small k.  A comparison of 
maximum errors, for several orders of approximation, is given in table 1 for ‘large’ y 
(= 10,5,3) ,  where y = k-’ is the ratio of wavelength to mean free path. Here B D M ( ~ )  
refers to the approximation resultingfrom equation (14) when terms to order z are 
retained, while p(m) refers to the perturbation approximation given by equation (24) 
when terms to order m are retained. The relative percentage error A is, by definition, 
the maximum value of 

2 m + l  

in the frequency range considered, w < 1.5k2, which contains the main contribution to 
S ( k ,  U ) .  

Table 1. Kinetic corrections for large y. 

Relative error (%) 

10 5 3 

Lorentzian 1 4 8.9 
BDM(O) 1 4 8.9 
B D M ( ~ )  lo-* 0.4 2.5 
BDM(2) 1 0 - ~  0.05 0.9 

p(1) lo-* 0.1 0.8 
p(0) 0.5 2 4.1 

As expected, the accuracy of both procedures decreases with decreasing y .  For large 
y ,  both approximation methods work well, the perturbation approximation giving 
somewhat better predictions, order-for-order. As y decreases the perturbation 
approximation becomes increasingly better, in comparison with BDM, so that for y = 3, 
the first-order perturbation approximation already gives better predictions than the 
second-order BDM approximation. 

As y decreases, the difference, between the predictions of the two methods 
increases. Figure 1 shows the first three BDM approximations plotted against the exact 
lineshape for y = 2; the slow convergence is evident. A similar plot for the first two 
perturbation approximations is given in figure 2, and the relative (percentage) errors for 
both methods are plotted in figure 3. The advantage of the perturbation approach is 
evident here. By the time y = 1.5, the BDM method cannot be used because its errors 
increase as higher-order approximations are used. The perturbation method is still a 
useful approximation scheme, however, although convergence has become slower. 

For y = 1 (wavelength equal to a mean free path), neither method is a useful 
approximation scheme. The lowest-order perturbation prediction for the lineshape, 
however, continues to follow the exact lineshape better than might have been expected 
(errors for y = 1.5 and y = 1.0 are shown in figure 4) and even in the extreme case 
y = 0.02, its peak height prediction is only about 20% too low. 
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Figure 1. BDM lineshape approximations m = 0, 1, 
2, and exact lineshape, y = 2. 

1 
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wik’ 

Figure 2. P approximations m =0, 1, and exact 
lineshape, y = 2. 

6. Discussion 

The present study compares several lineshape approximations in the kinetic regime 
with exact results, for a model gas. Clark (1975) compares the results of various other 
approximations, taken to lowest order, with ‘exact’ 21 -moment kinetic modelling 
predictions for Maxwell and hard sphere gases. Although there is no point of direct 
comparison, several general points may be made. One of Clark’s conclusions is that the 
generalised hydrodynamic approximation of Selwyn and Oppenheim (197 1) gives 
better agreement with 21-moment kinetic modelling predictions, for a Maxwell gas, 
(and thus with experiment) than the Burnett approximation of Ranganathan and Nelkin 
(1967). From Clark (1975) one sees that the maximum deviations of the former from 
‘exact’ results are about 4%, and of the latter about 6% for y 3 3. Here, at the same 
values of y, the generalised hydrodynamic approximation BDM( 1) deviates from exact 
results by at most 2 S % ,  while the perturbation approximation ~ ( 1 )  shows a maximum 
deviation of only 0.8%. 

Clark (1975) also presents ‘Selwyn approximate’ predictions, which seem to 
reproduce the shape of the central peak with roughly the same accuracy and range of 
applicability as the present ~ ( 0 )  prediction does, at least for y > 1. 
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Figure 3. Error ( O h )  of Bixon eta1 (1971) (BDM) and 
perturbation (P) lineshape approximations, relative 
to exact result, y = 2. 

L 

I I I I 
0 0 5  1 0  15 

w l k ’  

Figure 4. Error of P lineshape approximations, 
relative to exact result, y = 1.5 and y = 1.0. 

7. Concluding remarks 

The perturbed eigenvalue approximation for lineshapes has been used here with a 
simple model of the Boltzmann equation. Its extension to the full Boltzmann equation 
proceeds similarly and is straightforward (but more complicated), at least for a gas of 
Maxwell molecules. In view of the present success of the method, it would seem 
worthwhile to carry out an investigation similar to that of Clark (1975) for evaluating 
the perturbed eigenvalue lineshape approximation for the full Boltzmann equation. If, 
as seems possible, the method gives good results because of the mathematical structure 
of the approximation (in a similar way to, say, a Pad6 approximant or continued fraction 
approximation), then one might expect this method also to be advantageous for the full 
Boltzmann equation as it is for the present model equation. 

The generalised hydrodynamic approximation procedure considered here is, 
nevertheless, a valid way of obtaining kinetic corrections to lineshape predictions. The 
implication of the present study is not that the generalised hydrodynamics of Bixon et a1 
(197 1) has failed, but rather that better approximation procedures than that originally 
suggested by Bixon et a1 (1971) are needed in the context of their exact formalism. 

Finally, one may remark that the perturbed eigenvalue approach outlined in Foch 
and Ford (1970) may properly be thought of as another kind of ‘generalised hydro- 
dynamics’, albeit an intrinsically approximate one. 
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Appendix. One-dimensional model gases-notation and properties 

One may expand the perturbation h to the number density distribution function in a 
complete orthonormal set of states la): 

Ih) = M A ,  (All  

where (alp) = a,@, and sum over a is implied. The moments of h are 
W 

A, =(aIh)= dc w(c)#,(c)h(c) I, 
with respect to the weight function 

w(c) = e-c2/r1/2, (-43) 

&(c) =(clcu) = H,/(2aa!)1/2, (A4) 

and it is convenient to choose the expansion functions to be 

where H, are the Hermite polynomials 

c 2  d* (e-") 
H,=(-l)*e -* 

dc' ' 

these are the one-dimensional analogues of the Burnett functions. The first few 
moments of h are then 

AO = (Olh) = n, A1=(llh)=J2u, A2 = ( 2 / h )  = E/JZ, (A61 

where n, U and E are the deviations from equilibrium of the number density, flow 
velocity and energy density, non-dimensionalised with respect to equilibrium 
parameters in density PO and pressure p O ,  and to the reference velocity (2p0/pO)1/2. The 
kinematic coupling matrices 

(-47) 

%a+1 =%+La =[(a + 1)/211'2; ax,@ = 0 ,  p # a * l .  (A8) 

n u p  = (a  IC IP) 
in one dimension have the values 

One may write a class of simple model equations in the form 

where P is the projection operator 

P = 1 - Jc>(cJ 

and the states I(T) are the 'hydrodynamic states', i.e. those chosen to represent 
conserved quantities. Different aspects of the linearised Boltzmann equation are 
modelled by different choices for the set {(T}. 



2714 E A Johnson 

References 

Bixon M, Dorfman J R and MO K C 1971 Phys. Fhrds 14 1049 
Clark N A 1975 Phys. Rev. A 12 232 
Faddeyeva V N and Terent’ev N M 1961 Tables of Values of the Complex Probability Function (Oxford: 

Foch J and Ford G W 1970 Studies in Statistical Mechanics vol 5, ed J de Boer and G E Uhlenbeck 

Fried B D and Conte S D 1961 The Plasma Dispersion Function (New York: Academic) 
Goebel C J and Johnson E A 1979 Proc. 1 l t h  Int. Symp. Rarefied Gas Dynamics vol 1 (Paris: CEA) pp 75-84 
Kadanoff L P and Martin P C 1963 Ann. Phys., NY 24 419 
Mountain R D 1966 Rev. Mod. Phys. 38 205 
Nelkin M and Ghatak A 1964 Phys. Rev. 135 A4 
Ranganathan S and Nelkin M 1967 Phys. Fluids 10 2085 
RBsibois P and de Leener M 1977 Classical Kinetic Theory of Fluids (New York: Wiley) ch 5 
Selwyn P A and Oppenheim I 1971 Physica 54 161,195 
Sugawara A, Yip S and Sirovich L 1968 Phys. Fluids 11 925 
Wang Chang C S and Uhlenbeck G E 1970 Studies in Statistical Mechanics vol 5, ed J de Boer and G E 

Pergamon) 

(Amsterdam: North-Holland) part B, ch 4 

Uhlenbeck (Amsterdam: North-Holland) part A, ch 4 


